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Information theory approach to learning of the perceptron rule
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By recourse to a method based on information theory, we have studied the generalization problem in
perceptrons. We considered differentpriori distributions about the weights of the teacher perceptron. Our
approach allows us to define the information gain from the examples used in the training procedure. The
information gain can be used to choose a convenient example set for training the perceptron and to select the
transfer function of the student perceptron.
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I. INTRODUCTION ics. In this refinement, the space of weights is explored by a
stochastic learning process, i.e., a random walk on the train-
Neural networks exhibit remarkable properties for dataing energy landscap¢l]. Levin, Tishby, and Solla[6]
processing, having found use in a wide variety of environ-showed that the stationary distribution of weigR@N) is of
ments such as identification and classification of physicatibbsian characteZ ~*exg —E(W)/T].
ObJeCtS, time series processing, and Image reconstruction. The training energy is, in most cases, a complicated func-
Given a representative set of examples, with an effectivgion of W, with multiple valleys and hills. In particular, for
learning scheme, such systems can indeed capture the essggrceptrons with binary weights, one encounters regions in
tial relationships and correlations that govern the pertinen,, (p,T) plane that contain an enormous number of meta-
class Otf mputf—output assoctlat!o_r]s. This 'Slev'de':jcid bolt.h tk))l¥table states as the result of strong frustratishile there is
accurate performance on training examples and by reliablg, ;. ication of frustration for the continuous percepjron
generalizations or predictions for novel input patterns. ThusConsequentIy regarded as a relaxation phenomenon the

trained networks are able to produce outputs correspondinﬁ;ainin rocess can be an abnormally slow 67 This, of
to new inputs on the basis of an adequately selest@ding 9p y '

hypothesis This working hypothesis is represented by a sefcourse, constitutes a serious difficulty if one wishes to opti-
of synaptic weights denoted hy* . Much effort has conse- mize the set of weights because the system can be trapped in

quently been devoted to the task of developing suitable train® 0@l minimum. We show that these troubles can be

ing algorithms that are able to adjust the synaptic weights sgveided by regarding the training process asirgference
as to enable the network to infer the correct answer whe@Perationrather than as a relaxation phenomenon. The infer-
presented with a new inpusee[1,2] for a review. ence process is to be accomplished according to Occam’s

Information theory(IT) [3] has proved to be of utility in razor, i.e., with the minimum number of assumptions com-
devising learning techniques for perceptrgdss], and pro-  patible with the available data. Thus, the probability distri-
vides a powerful framework for discussing questions relatedution is to be obtained by recourse to IT ideas, within the
to the learning process, such @show to incorporate oua  framework of Jaynes’ maximum entropy princip(®EP)
priori information about the teacher perceptr6fP); (i)  [8—10. More specifically, we wish to investigate the prob-
how to select the appropriate working hypothesis for the stuability distribution that ensues in a situation in which each
dent perceptror(SP; and (iii) how to choose convenient member of the training set is regarded as a constraint for the
examples for the training procedure. entropy maximization procedure.

Usually, training schemes are based on gradient descent In the present work, the MEP is applied to the training of
algorithms on the training energy landscdfe The training  perceptrons supervised by a TP, with weigi§ and transfer

energy is defined by a cost function function gy, that provides a set of exampl&s,={S",{5},
with u=1, ... p. We consider here perceptrons whhin-

P put units S, connected to an output unit whose state is
Et(W):MZl e(W,S") 1) determined according td=g(S-W), where g(x) is the

transfer function of the output neuron. For each set of

where e(W,S") is some measure of the deviation apds ~ WeightsW the perceptron magSon . In order to select the
the number of examples. This scheme is liable to becom®orking hypothesisv* for the SP, we infer the posteriori
trapped in local minima of the energy surface with subsedistribution of weightsP(W|D,), and then we adopt as the
quent poor generalization performance. In order to avoid thigvorking hypothesisW* the configuration of weights that
difficulty, a further generalization has been considerednaximizes thea posterioriprobability distributionP(W|[D )

through incorporation of stochastic elements in the dynam{maximum likelihood criterion The present approach offers
an information measure as a bonus. This quantity, named the

_ information gain, is defined from theeposterioridistribution
*Electronic address: diambra@fisio.icb.usp.br P(Wle) which carries information about the example set
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used in the inferring procedure. We found that the informawhere Po(W) is an appropriatea priori distribution. The

tion gain could be a useful tool to analyze and help in choosnegative relative entrophl, , known as the Kullback-Leibler

ing convenient examples for the SP learning. Moreover, thelistance[11], defines the information gained aft@r ex-

information gain can tell us how suitable is a given transferamples fromD, have been presented to the SP. The choice

function g for reproducing the TP rule. of Py does not depend on the examples. It depends on our
We organize our presentation as follows. In Sec. Il weknowledge of the weights of the TP, or some additional con-

review the MEP method for obtaining the associadeplos-  straint imposed on the SP. As stated before, our main point is

teriori probability distribution. Thea priori probability dis-  that we are employing, in an individual fashion, each of the

tribution and the observation level concept are introduced. Ip examples of the training set. Thps-1 constraints are to

Sec. Il we examine how to incorporate ocarpriori infor- be considered, given by

mation about the weights of the TP, using Gaussian and two-

peakeda priori distributions. We also introduce an informa-

tion gain measure. In Sec. IV we analyze the generalization f P(W[D,,9)dW=1, 4

performance of an “average” perceptron as well as percep-

trons with weights from the maximum likelihood criterion.

Further, we illustrate how the information gain can be a use- 9 (L5 =5"(W)", 5

ful tool to help in choosing a convenient example set to be

used in the learning procedure. Finally, some conclusions arghere(W)! is the transpose dW). If p<N, many weights

drawn in Sec. V. W are compatible with our available information. Among alll
possible distributionsP(W|D,,g) that fulfill the require-
Il. IMPLEMENTATION OF OCCAM’'S RAZOR ments of Eqs(4) and(5), we have to select the(W|D,,g)

) ) ) ) . that contains no unjustified bias. Thus, following the central
We now describe the information theory implementationgnets of MEP, the relative entropy is maximized subjected

of Occam’s razor in order to determine the probability dis-q the constrainté4) and(5), which is tantamount to a search
tribution from the information contained in tHe,, assum- {5 the maximum of

ing g as the transfer function of the SP. In IT parlance, a
given set of observables, referred to as the relevant set for
building up the pertinent statistical operator, constitutes the _
so-called observation level. In dealing with neural networks,

one can use the information contained in the set of examples

in many different ways. Each of these leads to a different +W-(Sf’“)t)\P(W|Dp,g)]dW, (6)
probability distribution which exhibits diverse properties.

The standard choice is to consider just one observable, the

training energyE,, obtained by recourse to an expressionwhere\, and theA are Lagrange multipliers associated, re-
that involves the whole set of training examples. The stanspectively, with the normalization conditiqd) and with our
dard observation level is then given just By. As our in-  p constraints (5). Variation of Eg. (6) with respect to
tention is to concentrate our effort on the selection of the besP(W|D,,,g) immediately yields thex posteriori probability
working hypothesis, our idea here is to construct a moralistribution

involved observation level that uses the information con-

tained in the training set in a more efficien_t fashion than the P(W|Dp Jg)=exf — (1+ o) Jexp —W-T)Po(W), (7)
standard one. If each one of theexamples is regarded as a

constraint, we can indeed consider an observation level con- ¢ .
sisting of p observables. where I'=(S*)'A. Once P, is properly selected, the

Within the statistical physics framework, learning takesl-@drange multipliersy are self-consistently determined from

place through a modification of the probability distribution E9- (5) and elt2), which defines the partition functif
on the weight space due to incoming data. We shall assume
that, given an example sé&,, each setV is realized with
probability P(W|Dp,g). The entropy associated with the
probability distribution is given by

P(W|Dy.9)

P(W|Dp ,g)In W

+XoP(W|Dy,9)

Z:j exp(—W-T')Po(W)dW. 8

Notice that maximizing the relative entropy is equivalent
H(Dp:g):_f P(W|D,,g)In[P(W|D,,g)]dW, (2) to rr_1inir_nizing the information gain._ Expecti_ng a goo_d gen-
eralization performance when the information gain is mini-
mized might seem counterintuitive. It is convenient to be
while therelative entropy related to aa priori probability  aware of the inductive character of any process of gaining
distribution Py is given by knowledge using IT tools. The main tenet of MEP consists in
avoiding the introduction of any unnecessary hypothesis. In
this sense, the minimization procedure of the information
gain disregards all assumptions that are not supported by the
(3)  training set.

P(W|Dy.9)
Po(W)

Hr(Dp!g|P0):_f P(W[Dj,9)In }dW,
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IlI. SELECTING A PRIORI DISTRIBUTIONS

0.6 a=0.12
A judicious selection of the priori probability distribu- | [ | W A S Z;g:ig
tion Py now becomes mandatory. In order to adequately se- 0.5 —-—-a=0.80
lect Py, we must rely on our knowledge concerning the TP
weights. Two instances are to be consider@dWe assume 0.4
that nothing is known about TP weights, except their finite- o
ness, so we use a Gaussapriori distribution;(ii) we know &
that the TP has binary weights and then we use a two-peaked 037
a priori distribution.
In the first case, according to IT strictures we choBge 0.2
proportional to exptW-W/2a). When we replace this \
choice in Eq.(7) we obtain a Gaussian form for tteepos- 0.1 K
teriori distribution centered afW)= —ar, i.e., 1 // \\
0.0 S T p——
B N2 (W+al)? -4 -2 0 2 4
P(W|Dp,g)—(27-ra) ex —T ) 9 W

which is of the formZ_lexp[—,BE]. The energy landscape FIG. 1. Two-peakea priori distribution (13) for different val-
exhibits a single minimum. Both the definition bfand the l‘{es_Ofa;jaig-ggy 30“?1 |(Ijnetéa:?.20, dashed linea=0.40, dotted
constraints(5) allow for the elimination of the Lagrange ¢ @nda=?v.eb, dash-dotied line.

multipliers\. Thus, one can express tt}/) solely in terms

of data sets- parametera. When we replace this choice in E¢r) we

obtain oura posteriori probability distribution as a sum of

(W)=I ps(gﬁ)gfl(gg), (100  two Gaussians, weighted by =exp(TI)/2 cosh(y), i.e.,
where | ,((S*) is the Moore-Penrose pseudoinverse of the 1 N N (W,+al';—1)?
rectangular input matrix3* [12]. For p<N the Moore- P(W|Dp'9):(2wa)m/zﬂ Pi €xg — 2a

Penrose  pseudoinverse is  defined byl ,{(S")

=(S[S*(S4)']" L It should be remarked that whem - (Wj+al';+1)2
>N (overdetermined capehe pseudoinverse of the input P exp{— -~ 2a
matrix §* is defined byl ,o(S*) =[($*)'S*]1(S*)", and it is

equivalent to the least squares solutjd8]. Now, we select The parametera can be regarded as an Ising constraint
the most probable set of weights compatible with the consmoothness parameter. The multipliarsare obtained after

’ . (14)

straints as our working hypothesis, i.&/* =(W). solving N uncoupled equations in tHe, given by
From Egs.(2) and(3), we evaluate the entrogy and the

information gain per weight,y, respectively, IpS(Sf‘)g‘l(gg)JraF+tanr(F)=0. (15
N In the working hypothesis selection, we have in mind again
H(Dy,9)= E[I”(ZﬁaHl]' (12) the maximum likelihood criterion. Thus, our specific selec-

tion W* is to be accomplished maximizing E4.4) wherel’

(W) - (W)t is obtained by solving Eq15).
14(Dp,g|Po)= AN (12 Thereby, the entropy of the a posteriori distribution

(14) is given by
The information gain per weighi.2) depends on the param-
etera, but only as a scaling factor. In this case, the average
over examples of rises linearly with increasing = p/N.

One more interesting case occurs when we know before
hand that the TP has binary weights. It makes sense to ex- _ < n
amine the double-peaked probability distribution described
by

N

+Z In[cosKT))]

S

while the information gain per weightty , with respect to the

N 2
H(Dp,g):E |I’l(2’7Ta)+a+l

N o 2 e g . . . .
PO(W)=(27Ta)‘N’2H [;exp{— (W,Zal) +% a priori distribution (NlB) is given by
(Wi+1)2 |g(Dp,g|P0):N_12 (gFinLFitanh(Fi)—In[COSF(Fi)] .
X exp{ - ] : (13 '
2a 17)

i.e., asoftform of an Ising constraint. We display in Fig. 1 Therefore] 4(D,g|P,) is expressed in terms of the example
the a priori distribution Po(W) for different values of the setD, used in the learning procedure, and of the transfer

046106-3



L. DIAMBRA AND J. FERNANDEZ PHYSICAL REVIEW E64 046106

1.0
064 ]
/
/
/
/
/
/
//
0.8 4 /
/
/
/
/
/
/
/
/
/
/
/
—_—
%) 0.6 /
bl — //
ks ?
e [ K
< /
(=] ~ e

0.0 0.2 0.4 0.6 0.8 1.0 1.2

FIG. 2. Information gain per weight as a function @ffor N
=100, averaged over 500 training sgts: TP h.as pinary.weights and 100, averaged over 500 training sets. TP has Gaussian weights
?nO(FXi) _E(X)—_()Xizwe lIJiZeIirtlh? iagqgopgor'hd'gtlri':“t'f'z)sllg'sglege: do(X)=g(x)=x. We use the sama priori distributions displayed

g. 1:a=0.12, solid linea=1.29, dashed linea=0.49, dotted  j, rig 1:2=0.12, solid linea=0.20, dashed linea=0.40, dotted

FIG. 3. Information gain per weight as a function @ffor N

line; anda=0.80, dash-dotted line. line; anda=0.80, dash-dotted line.

function of the SP. We computg numerically as a function N

of « for a TP in two situationsti) with binary weights, and P(W[D, ,g)=H {pF (W, —1)+p; 8(W;+1)},
1

(ii) with Gaussian weights. In both cases we perform the
simulations withN=100, and then we average over 500

training sets. For the sake of simplicity, linear transfer func- - + - .
tions are used for the SP and TP. Figure 2 depigter the where the coefficientp;” are the probabilities of having the

o . ith weight adopting the- 1 values, and stands for Dirac’s
SP from the examples prepared by.aTP W'th bmary We'ghtsdistribution. These probabilities can also be expressed in
for the same values of parametedisplayed in Fig. 1. We

. . . . . analytical fashion:
can see that the information gain rate is constant for high n

values ofa (typically greater than 0)4in agreement with the
Gaussian case. Far=0.12, we found saturation beyond p

(18

. exp{=tanh [{l ,«(S") g (N1}

=0.90, indicated by a very small slope in thecurve. For 2 cosHtanh Y[ {1 ,s(S") g~ (N1}

smaller values o& (not shown in the figunethe information

gain rate became negative at a given value dfiat depends Now we again use the maximum likelihood criterion in order

on the value of the parametex For «a=1 we found a to select the working hypothesi&*, i.e., we choosen;

second-order transition to a phase where the SP cannot gainl (W¥=—1), if p;>p;” (p;"<p;"). This recipe can be

more information than that underlying tpe=N examples. easily implemented. Just tak&* =sgrip;,” —p; ] or

Figure 3 depictd 4 for the SP from examples prepared by a

TP with Gaussian weights as a function @f for the same Wi =sgri{l ()9~ (L5} (20)

values of parametex displayed in Fig. 1 and Fig. 2. We can

see that, as in Fig. 2, thg, rate is constant for highe  Notice that, in this case, the most probable set of weights is

values, as expected for the Gausserpriori distribution  not equal to the mean valugV), which falls outside the

case. But, for smaller values ef | ; grows exponentially, in  binary support. So it does not make sense to use “nonbi-

contrast to the case with binary weights. nary” quantities as working hypothesis. The same problem
The limit a—0 corresponds to that case in which the can arise for the spherical perceptromhere, in general,

weights are restricted to adopt values equakttd; it was  |(W)|<|W,|) and any other perceptron whose probability

previously studied ii10]. We present below a few of those distribution of weights has a support not extending to the full

results for completeness. In this important limit fhecan be W space.

expressed in analytical fashion, in terms of the training set In the limita—0, the entropyH and the information gain

information. We havd’= —tanh '[1,{S*)g~*(¢4)], and the  are not well defined, because the argument of tarih Eq.

a posterioridistribution (14) acquires the appearance (19) can be greater than 1.

(19
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IV. GENERALIZATION ABILITY

The training energy measures the network’s performance
on a limited set of examples, whereas the ultimate goal is tc 1>
find a network that performs well on all inputs, not just those ;| ~
in the training set. The performance of a given netwark “
on the whole input space is measured by the generalizatiol ] ~
function. It is defined as the average error of the network 0.8 N
over the whole input space, i.e., ] ~

1 )
W)= | du(STasWo S -gW 9% @21 _ .

wheredu(S) denotes a measure in the input space. If the 041 h N
inputs are distributed independently with zero mean value ] N

2
and variance 1, thedu(S)=1I;(27) e S’2dS, and the 0o N
generalization error can be expressed by N

0.0 T T T T T T T T T
[9o(X) 0.0 0.2 0.4 0.6 0.8 1.0

Gg(R) =

1 ( dxdy x2+y?—2xyR
4m) 1-R? 2(1-R?)

—g(y)1%, (22)
. . FIG. 4. Typical generalization error for a perceptron with linear
where R=W,- W/(|W,||W|). The behavior ofeg is COM-  ransfer function(solid line), and for a perceptron with transfer
pletely determined by the parameferLet us consider here function sinhg)/\e (dashed ling

the generalization error of a SP with the same transfer func-
tion as the TP. In the linear case, wheggx) = g(x) =x, the
generalization error is simply

o

so we examine the different situations using simulation. In
all our simulations we usetl=100 and we averaged over
e;=1-R. (23) 500_ training sets. Using the dou_bled.—pgaleedric.)ri distri-
butions, we consider here two situatioris: learning a rule
The second transfer function to be considered is the cagénderlying the TP with binary weights arfd) learning a

Jo(X) =g(x) =sinh)/\/e. In this case, the generalization er- rule underlying the TP with Gaussian weights. For the sake
ror is given by of simplicity, linear transfer functions are used for the SP

and TP in both situations.
€g(R)=sinh(1)—sinh(R). (24 In the first case we have a realizable rule for the[ $8.
Figure 5 displays the generalization error for the saane
The powerful formalism of equilibrium statistical me- priori distributions displayed in Fig. Ja=0.12 as the solid
chanics may now be applied to calculate averages of 2. line, a=0.20 dasheda=0.40 dotted, anca=0.80 dash-
with respect to the measuR(W). Such averages yield in- dotted. We found a finite value of the error generalization at
formation about the typical generalization performance of ax=1 denoted bye.,;,. The €., value depends on tha
network, governed b¥(W). Thus the expected value of the priori distribution through the parametaias shown in Fig. 6
overlap of the SP with the TP is given by  (solid line. The ¢, vanishes for very smallbinary SP,
=W, (W)/(|Wol|[{W)|). For all cases studied heréW)  and very larggGaussian SPvalues of the parameter This
=Ips(9*)g‘1(§g), i.e., the mean overlap does not depend orresult suggests that inappropriate selection of ahpriori
the selecteda priori distribution and is given byR=« for  distribution can lead to increaseg,;,, with consequent poor
a<1. In Fig. 4, we display the generalization error of the generalization performance. In this case, there is a loss of
average perceptron, with the linear transfer function as @nformation when we interpret the example of the training set
solid line and the transfer function sinf\/e as a dashed D, as constraint$5). There is no loss of information when
line. we choose tha priori distributionPy appropriately. In order
In the working hypothesis selection we apply the maxi-to establish a comparison we briefly review some results of
mum likelihood criterion. In the case of a Gaussa@priori ~ the Gibbs learning scheme &t=0 for this case. For ang
distribution, the most probable configuration of weights is>0, the training energy possesses only one global minimum
given by the mean valu€l0) and the generalization error R=1. However, the training energy may still possess Rw-
curves coincide with those shown in Fig. 4. When both TPmetastables states. For smal] the energy landscape far
and SP have Gaussian weights the Gibbs learning schenasvay from the optimal overlaR=1 is rough, implying slow
gives perfect generalization at=1, equivalently to the ap- dynamic learning. Seungt al.[7] have shown by numerical
proach presented here. But, when we use the doubled-peaksiinulations that foew=2.39 there are no local minima at all,
a priori distributions displayed in Fig. 1, we have a variety and that fora>1 the system converges rapidlyRe=1 from
of scenarios. For these cases, there is no analytical solutioamost all initial conditions. In this case, establishing a com-

046106-5



L. DIAMBRA AND J. FERNANDEZ PHYSICAL REVIEW E64 046106

1.0

0.8 1

0.6 4

o
w
0.4 -
0.2 a=0.12
——— a=0.20
e 320,40
—————————— a=0.80
0.0 d T T T T T v T T T T : 0.0 T T T T T T 4 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
o o
FIG. 5. Generalization error as a function af for N= 100, FIG. 7. Generalization error as a function af for N=100,

averaged over 500 training sets. The examples were generated byageraged over 500 training sets. The examples were generated by a
TP with binary weights. We use the saraepriori distributions TP whose weights are normally distributed. We use the same
displayed in Fig. 1:a=0.12, solid line;a=0.20, dashed linea  priori distributions displayed in Fig. 1a=0.12, solid line;a
=0.40, dotted line; and.=0.80, dash-dotted line. =0.20, dashed linea=0.40 dotted line; ané=0.80, dash-dotted

line.
plete comparison is difficult due to the different scenarios
presented by the two protocols, but we can say that, when "Wehows e, versusa for the samea priori distributions dis-
have the appropriate, the protocol based on information laved in Fi a=0.12 lid linea=0.20 dash
theory and the Gibbs learning schemd&at0 have a similar played in Fig. 1:2=0.12 as a solid linea=0.20 dasheda
performance =0.40 dotted, ané=0.80 dash-dotted. For these values of

In the second case, the TP weighfts, are normally dis- a,_vvle have co_ntrl]nuofus rl]garr]nmg \I’V'th fo'n'ﬁ‘]‘“ vaI_ungt
tributed, so the rule is realizable only far—«. Figure 7 @= L. €min VANISNES TOr igher values aras snown In =g.

6 (dashed ling but, in contrast with the earlier exampkg,;,
does not diminish for smaller values af In the limit a

—0 the SP weights are restricted to binary values, so the rule
is unrealizable due to a mismatch of weights between the TP
and SP. In this case,;, in the thermodynamic limit is 0.202
(dotted line in Fig. 6, the symmetric replica approadf]
yields an asymptotic learningy— €p,;, when a—. These
results suggest, at least in this instance, that the information
theoretical approach is a more effective learning technique
than the classical Gibbs learning scheme.

0.14

0.014

min

Selection of examples

The expression$l2) and (17) establish the information
gainlg from the examples used in the training proceduge.
depends also on the transfer functipmused by the SP, and
on thea priori distribution. Thus|, can capture some fea-
tures associated with the training set. We think that the in-
formation gain could be used to evaluate the example set in
different situations, and the suitability of the transfer func-
tion used by the SP. Below, we explore some of these possi-
bilities.

FIG. 6. emin versusa for N=100, averaged over 500 training e evaluated 4 for different example sets using a two-
sets. TP with binary weights as solid line and TP with GaussiarP€akeda priori distribution witha=0.05 and linear transfer
weights as dashed line,, in the limit a—0 is displayed as the function for the SP and TP. In Table I, we show thevalues
dotted line. obtained from three different example sedt$from 50 linear

0.0014

0.0001

a
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TABLE I. |4 values obtained from 50 linear independént)  can see that the information gained in this particular case is
examples, and from 50 non-LI examples at the tigpvalues ob-  significantly greater when we choose the right transfer func-
tained from 50 LI examples to which we add Gaussian noise withtjon for the SP.
three different standard deviatiofSD) at the bottom.

V. DISCUSSION AND CONCLUSIONS

Clean data lg o

Ll 0.410 0.089 We have illustrated the IT approach to Iearning a rule
' ‘ from examples by perceptrons. We have regarded diffexent

No_n"" 0.147 0.051 priori distributions in two scenarios: a TP with binary

Noisy data(SD) g 7 weights and a TP with Gaussian weights. We conclude that

0.10 0.426 0.090 the network’s performance is very sensitive to the choice of

0.05 0.426 0.090 our a priori distribution. Our approach takes advantage of

0.01 0.426 0.090 this fact in the sense of allowing the introduction of our

previous knowledge concerning the nature of the TP weights.
In particular, one can evaluate the probabilities associated
independentLl) examples i) from a set with 25 LI ex-  with each weight in terms of the available examples. It
amples plus 25 examples that are linear combinations of thenould be pointed out that, in the limit—0, our approach

first 25, and(iii) from 50 LI examples to which we added does not exhibit the phase transition from poor generaliza-
three different levels of Gaussian noise. Again we ulked tjon to perfect generalization characteristic of the symmetric
=100 and we averaged over 500 training sets. As one eXeplica solution for the binary perceptrgf]. In addition, at
pects, the information gained using non-LI examples is lesfeast in the perceptron case investigated here, frustration ap-
than when use LI examples. In the case of noisy examplegears to be the result of poor “administrative management”
the information gain is greater than for clean examples, beof the available examples. Our IT approach enables us to
cause the information needed to describe this set is greatesfectively employ all the available information, so that each
These simple examples show thgtworks well to evaluate example is used as a constraint. Thus, the ensuing observa-
the information contained in the example set before trainingion level becomes much richer than the standard one. Effi-
the SP. This kind of study could be relevant when we need t@jent management leads to better results in neural processes
select the examples, and has the advantage of avoiding traigs in the real world.

ing procedures with the consecutive comparison of the per- The IT approach also seems to offer promising perspec-
formance of two perceptrons trained with different exampletive as a learning protocdl16,17; the methodology pre-
sets. sented here introduces an information measure as a bonus.

The problem of learning from examples reduces to deteryye used some examples to show that this quantity can be a
mining adequate weights, given a transfer function f@m useful tool to explore both the example set to be used in the
which we choose in one way or another. As discussed byearning procedure, and the transfer function form used by
Rissanerj15], there is no algorithmic way to determine this the SP. We wish to remark that thgis easy and not expen-
transfer function. However, the information gdipdepends  sive to compute. It is expressed only in terms of the training
both upon the specific choice of the training set, éndan  set, while measures like the mean square error are computed
indirect way on the transfer function used by the SP. Oneogver many of test examples. This is certainly a notable facet
may ask the following question: Is it possible that the infor-of our approach that greatly helps in studying the learning
mation gain determines the suitability of a given transferprocess in a variety of situations, without paying an exces-
function of the SP, in order to reproduce the TP? sive computational cost.

We can try to answer the above question by testing the The learning protocol presented here constitutes an extra
hypothesis in the following manner. Consider a binary TPlearning technique for perceptrons, which should be of inter-
with transfer functiongy(x) =tanh§) and N=100, which  est not only for basic research but also for applications to
generates 75 independent examples. We compute, usingngany interesting real world problems.
sharp two-peaked priori distribution (@=0.05), the infor-
mation gained from these examples by two SP’s, one with
g(x)=tanh{) and the other with a linear transfer function
g(x) =x. In the case of a SP with the same transfer function The authors acknowledge fruitful discussions with N. Cat-
as the TP, we have,=0.669 with a standard deviation of icha. L.D. acknowledges the financial support of FAPESP
0.061. In the case of a SP wih(x) =X, the information Grant No. 99/07186-3Brazil) and J.F. acknowledges the
gained isly=0.229 with a standard deviation of 0.050. We financial support of UNLRArgenting.
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