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Information theory approach to learning of the perceptron rule

L. Diambra1,* and J. Ferna´ndez2
1Departamento de Fisiologia e Biofı´sica, ICB Universidade de Sa˜o Paulo, cep 05315-970, Sa˜o Paulo, Sa˜o Paulo, Brazil

2Departamento de Fı´sica, Universidad Nacional de La Plata, casilla de correo 67, 1900 La Plata, Argentina
~Received 31 January 2001; revised manuscript received 17 May 2001; published 20 September 2001!

By recourse to a method based on information theory, we have studied the generalization problem in
perceptrons. We considered differenta priori distributions about the weights of the teacher perceptron. Our
approach allows us to define the information gain from the examples used in the training procedure. The
information gain can be used to choose a convenient example set for training the perceptron and to select the
transfer function of the student perceptron.
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I. INTRODUCTION

Neural networks exhibit remarkable properties for d
processing, having found use in a wide variety of enviro
ments such as identification and classification of phys
objects, time series processing, and image reconstruc
Given a representative set of examples, with an effec
learning scheme, such systems can indeed capture the e
tial relationships and correlations that govern the pertin
class of input-output associations. This is evidenced both
accurate performance on training examples and by relia
generalizations or predictions for novel input patterns. Th
trained networks are able to produce outputs correspon
to new inputs on the basis of an adequately selectedworking
hypothesis. This working hypothesis is represented by a
of synaptic weights denoted byW* . Much effort has conse
quently been devoted to the task of developing suitable tr
ing algorithms that are able to adjust the synaptic weights
as to enable the network to infer the correct answer w
presented with a new input~see@1,2# for a review!.

Information theory~IT! @3# has proved to be of utility in
devising learning techniques for perceptrons@4,5#, and pro-
vides a powerful framework for discussing questions rela
to the learning process, such as~i! how to incorporate oura
priori information about the teacher perceptron~TP!; ~ii !
how to select the appropriate working hypothesis for the s
dent perceptron~SP!; and ~iii ! how to choose convenien
examples for the training procedure.

Usually, training schemes are based on gradient des
algorithms on the training energy landscapeEt . The training
energy is defined by a cost function

Et~W!5 (
m51

p

e~W,Sm! ~1!

wheree(W,Sm) is some measure of the deviation andp is
the number of examples. This scheme is liable to beco
trapped in local minima of the energy surface with sub
quent poor generalization performance. In order to avoid
difficulty, a further generalization has been conside
through incorporation of stochastic elements in the dyna
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ics. In this refinement, the space of weights is explored b
stochastic learning process, i.e., a random walk on the tr
ing energy landscape@1#. Levin, Tishby, and Solla@6#
showed that the stationary distribution of weightsP(W) is of
Gibbsian character:Z21exp@2Et(W)/T#.

The training energy is, in most cases, a complicated fu
tion of W, with multiple valleys and hills. In particular, fo
perceptrons with binary weights, one encounters region
the (p,T) plane that contain an enormous number of me
stable states as the result of strong frustration~while there is
no indication of frustration for the continuous perceptro!.
Consequently, regarded as a relaxation phenomenon
training process can be an abnormally slow one@7#. This, of
course, constitutes a serious difficulty if one wishes to op
mize the set of weights because the system can be trapp
a local minimum. We show that these troubles can
avoided by regarding the training process as aninference
operationrather than as a relaxation phenomenon. The in
ence process is to be accomplished according to Occa
razor, i.e., with the minimum number of assumptions co
patible with the available data. Thus, the probability dist
bution is to be obtained by recourse to IT ideas, within t
framework of Jaynes’ maximum entropy principle~MEP!
@8–10#. More specifically, we wish to investigate the pro
ability distribution that ensues in a situation in which ea
member of the training set is regarded as a constraint for
entropy maximization procedure.

In the present work, the MEP is applied to the training
perceptrons supervised by a TP, with weightW0 and transfer
function g0, that provides a set of examplesDp5$Sm,z0

m%,
with m51, . . . ,p. We consider here perceptrons withN in-
put units Si connected to an output unitz whose state is
determined according toz5g(S•W), where g(x) is the
transfer function of the output neuron. For each set
weightsW the perceptron mapsS on z. In order to select the
working hypothesisW* for the SP, we infer thea posteriori
distribution of weightsP(WuDp), and then we adopt as th
working hypothesisW* the configuration of weights tha
maximizes thea posterioriprobability distributionP(WuDp)
~maximum likelihood criterion!. The present approach offer
an information measure as a bonus. This quantity, named
information gain, is defined from thea posterioridistribution
P(WuDp) which carries information about the example s
©2001 The American Physical Society06-1
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L. DIAMBRA AND J. FERNÁNDEZ PHYSICAL REVIEW E64 046106
used in the inferring procedure. We found that the inform
tion gain could be a useful tool to analyze and help in cho
ing convenient examples for the SP learning. Moreover,
information gain can tell us how suitable is a given trans
function g for reproducing the TP rule.

We organize our presentation as follows. In Sec. II
review the MEP method for obtaining the associateda pos-
teriori probability distribution. Thea priori probability dis-
tribution and the observation level concept are introduced
Sec. III we examine how to incorporate oura priori infor-
mation about the weights of the TP, using Gaussian and t
peakeda priori distributions. We also introduce an informa
tion gain measure. In Sec. IV we analyze the generaliza
performance of an ‘‘average’’ perceptron as well as perc
trons with weights from the maximum likelihood criterion
Further, we illustrate how the information gain can be a u
ful tool to help in choosing a convenient example set to
used in the learning procedure. Finally, some conclusions
drawn in Sec. V.

II. IMPLEMENTATION OF OCCAM’S RAZOR

We now describe the information theory implementati
of Occam’s razor in order to determine the probability d
tribution from the information contained in theDp , assum-
ing g as the transfer function of the SP. In IT parlance
given set of observables, referred to as the relevant se
building up the pertinent statistical operator, constitutes
so-called observation level. In dealing with neural networ
one can use the information contained in the set of exam
in many different ways. Each of these leads to a differ
probability distribution which exhibits diverse propertie
The standard choice is to consider just one observable,
training energyEt , obtained by recourse to an expressi
that involves the whole set of training examples. The st
dard observation level is then given just byEt . As our in-
tention is to concentrate our effort on the selection of the b
working hypothesis, our idea here is to construct a m
involved observation level that uses the information co
tained in the training set in a more efficient fashion than
standard one. If each one of thep examples is regarded as
constraint, we can indeed consider an observation level c
sisting ofp observables.

Within the statistical physics framework, learning tak
place through a modification of the probability distributio
on the weight space due to incoming data. We shall ass
that, given an example setDp , each setW is realized with
probability P(WuDp ,g). The entropy associated with th
probability distribution is given by

H~Dp ,g!52E P~WuDp ,g!ln@P~WuDp ,g!#dW, ~2!

while the relative entropy related to ana priori probability
distributionP0 is given by

Hr~Dp ,guP0!52E P~WuDp ,g!lnFP~WuDp ,g!

P0~W! GdW,

~3!
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where P0(W) is an appropriatea priori distribution. The
negative relative entropyHr , known as the Kullback-Leibler
distance@11#, defines the information gained afterp ex-
amples fromDp have been presented to the SP. The cho
of P0 does not depend on the examples. It depends on
knowledge of the weights of the TP, or some additional co
straint imposed on the SP. As stated before, our main poin
that we are employing, in an individual fashion, each of t
p examples of the training set. Thusp11 constraints are to
be considered, given by

E P~WuDp ,g!dW51, ~4!

g21~z0
m!5Sm

•^W& t, ~5!

where^W& t is the transpose of̂W&. If p,N, many weights
W are compatible with our available information. Among a
possible distributionsP(WuDp ,g) that fulfill the require-
ments of Eqs.~4! and~5!, we have to select theP(WuDp ,g)
that contains no unjustified bias. Thus, following the cent
tenets of MEP, the relative entropy is maximized subjec
to the constraints~4! and~5!, which is tantamount to a searc
for the maximum of

2E H P~WuDp ,g!lnFP~WuDp ,g!

P0~W! G1l0P~WuDp ,g!

1W•~Sm! tlP~WuDp ,g!J dW, ~6!

wherel0 and thel are Lagrange multipliers associated, r
spectively, with the normalization condition~4! and with our
p constraints ~5!. Variation of Eq. ~6! with respect to
P(WuDp ,g) immediately yields thea posterioriprobability
distribution

P~WuDp ,g!5exp@2~11l0!#exp~2W•G!P0~W!, ~7!

where G5(Sm) tl. Once P0 is properly selected, the
Lagrange multipliersl are self-consistently determined from
Eq. ~5! ande(11l0), which defines the partition functionZ:

Z5E exp~2W•G!P0~W!dW. ~8!

Notice that maximizing the relative entropy is equivale
to minimizing the information gain. Expecting a good ge
eralization performance when the information gain is mi
mized might seem counterintuitive. It is convenient to
aware of the inductive character of any process of gain
knowledge using IT tools. The main tenet of MEP consists
avoiding the introduction of any unnecessary hypothesis
this sense, the minimization procedure of the informat
gain disregards all assumptions that are not supported by
training set.
6-2
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III. SELECTING A PRIORI DISTRIBUTIONS

A judicious selection of thea priori probability distribu-
tion P0 now becomes mandatory. In order to adequately
lect P0, we must rely on our knowledge concerning the T
weights. Two instances are to be considered:~i! We assume
that nothing is known about TP weights, except their fini
ness, so we use a Gaussiana priori distribution;~ii ! we know
that the TP has binary weights and then we use a two-pea
a priori distribution.

In the first case, according to IT strictures we chooseP0
proportional to exp(2W•W/2a). When we replace this
choice in Eq.~7! we obtain a Gaussian form for thea pos-
teriori distribution centered at̂W&52aG, i.e.,

P~WuDp ,g!5~2pa!2N/2expF2
~W1aG!2

2a G , ~9!

which is of the formZ21exp@2bE#. The energy landscap
exhibits a single minimum. Both the definition ofG and the
constraints~5! allow for the elimination of the Lagrang
multipliersl. Thus, one can express the^W& solely in terms
of data sets:

^W&5I ps~Sm!g21~z0
m!, ~10!

where I ps(S
m) is the Moore-Penrose pseudoinverse of

rectangular input matrixSm @12#. For p<N the Moore-
Penrose pseudoinverse is defined byI ps(S

m)
5(Sm) t@Sm(Sm) t#21. It should be remarked that whenp
.N ~overdetermined case! the pseudoinverse of the inpu
matrix Sm is defined byI ps(S

m)5@(Sm) tSm#21(Sm) t, and it is
equivalent to the least squares solution@13#. Now, we select
the most probable set of weights compatible with the c
straints as our working hypothesis, i.e.,W* 5^W&.

From Eqs.~2! and~3!, we evaluate the entropyH and the
information gain per weight,I g , respectively,

H~Dp ,g!5
N

2
@ ln~2pa!11#, ~11!

I g~Dp ,guP0!5
^W&•^W& t

2aN
. ~12!

The information gain per weight~12! depends on the param
etera, but only as a scaling factor. In this case, the aver
over examples ofI g rises linearly with increasinga5p/N.

One more interesting case occurs when we know be
hand that the TP has binary weights. It makes sense to
amine the double-peaked probability distribution describ
by

P0~W!5~2pa!2N/2)
i

N H 1

2
expF2

~Wi21!2

2a G1
1

2

3expF2
~Wi11!2

2a G J , ~13!

i.e., asoft form of an Ising constraint. We display in Fig.
the a priori distribution P0(W) for different values of the
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parametera. When we replace this choice in Eq.~7! we
obtain oura posteriori probability distribution as a sum o
two Gaussians, weighted bypi

75exp(6Gi)/2 cosh(Gi), i.e.,

P~WuDp ,g!5
1

~2pa!N/2)i

N H pi
1expF2

~Wi1aG i21!2

2a G
1pi

2expF2
~Wi1aG i11!2

2a G J . ~14!

The parametera can be regarded as an Ising constra
smoothness parameter. The multipliersl i are obtained after
solving N uncoupled equations in theG i , given by

I ps~Sm!g21~z0
m!1aG1tanh~G!50. ~15!

In the working hypothesis selection, we have in mind ag
the maximum likelihood criterion. Thus, our specific sele
tion W* is to be accomplished maximizing Eq.~14! whereG
is obtained by solving Eq.~15!.

Thereby, the entropyH of the a posteriori distribution
~14! is given by

H~Dp ,g!5
N

2 F ln~2pa!1
2

a
11G1(

i

N

ln@cosh~G i !#

2 K lnFcoshS W

a D G L , ~16!

while the information gain per weight,I g , with respect to the
a priori distribution ~13! is given by

I g~Dp ,guP0!5N21(
i

N S a

2
G i

21G i tanh~G i !2 ln@cosh~G i !# D .

~17!

Therefore,I g(Dp ,guP0) is expressed in terms of the examp
set Dp used in the learning procedure, and of the trans

FIG. 1. Two-peakeda priori distribution ~13! for different val-
ues ofa: a50.12, solid line;a50.20, dashed line;a50.40, dotted
line; anda50.80, dash-dotted line.
6-3
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L. DIAMBRA AND J. FERNÁNDEZ PHYSICAL REVIEW E64 046106
function of the SP. We computeI g numerically as a function
of a for a TP in two situations:~i! with binary weights, and
~ii ! with Gaussian weights. In both cases we perform
simulations withN5100, and then we average over 50
training sets. For the sake of simplicity, linear transfer fun
tions are used for the SP and TP. Figure 2 depictsI g for the
SP from the examples prepared by a TP with binary weig
for the same values of parametera displayed in Fig. 1. We
can see that the information gain rate is constant for h
values ofa ~typically greater than 0.4!, in agreement with the
Gaussian case. Fora50.12, we found saturation beyonda
50.90, indicated by a very small slope in theI g curve. For
smaller values ofa ~not shown in the figure! the information
gain rate became negative at a given value ofa that depends
on the value of the parametera. For a51 we found a
second-order transition to a phase where the SP cannot
more information than that underlying thep5N examples.
Figure 3 depictsI g for the SP from examples prepared by
TP with Gaussian weights as a function ofa, for the same
values of parametera displayed in Fig. 1 and Fig. 2. We ca
see that, as in Fig. 2, theI g rate is constant for highera
values, as expected for the Gaussiana priori distribution
case. But, for smaller values ofa, I g grows exponentially, in
contrast to the case with binary weights.

The limit a→0 corresponds to that case in which t
weights are restricted to adopt values equal to61; it was
previously studied in@10#. We present below a few of thos
results for completeness. In this important limit theG i can be
expressed in analytical fashion, in terms of the training
information. We haveG52tanh21@Ips(S

m)g21(z0
m)#, and the

a posterioridistribution ~14! acquires the appearance

FIG. 2. Information gain per weight as a function ofa for N
5100, averaged over 500 training sets. TP has binary weights
g0(x)5g(x)5x. We use the samea priori distributions displayed
in Fig. 1: a50.12, solid line;a50.20, dashed line;a50.40, dotted
line; anda50.80, dash-dotted line.
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P~WuDp ,g!5)
i

N

$pi
1d~Wi21!1pi

2d~Wi11!%,

~18!

where the coefficientspi
6 are the probabilities of having th

i th weight adopting the61 values, andd stands for Dirac’s
distribution. These probabilities can also be expressed
analytical fashion:

pi
65

exp̂ 6tanh21@$I ps~Sm!g21~z0
m!% i #‰

2 cosĥtanh21@$I ps~Sm!g21~z0
m!% i #‰

. ~19!

Now we again use the maximum likelihood criterion in ord
to select the working hypothesisW* , i.e., we chooseWi*
51 (Wi* 521), if pi

1.pi
2 (pi

1,pi
2). This recipe can be

easily implemented. Just takeWi* 5sgn@pi
12pi

2# or

Wi* 5sgn@$I ps~Sm!g21~z0
m!% i #. ~20!

Notice that, in this case, the most probable set of weight
not equal to the mean valuêW&, which falls outside the
binary support. So it does not make sense to use ‘‘non
nary’’ quantities as working hypothesis. The same probl
can arise for the spherical perceptron~where, in general,
u^W&u<uW0u) and any other perceptron whose probabil
distribution of weights has a support not extending to the
W space.

In the limit a→0, the entropyH and the information gain
are not well defined, because the argument of tanh21 in Eq.
~19! can be greater than 1.

nd
FIG. 3. Information gain per weight as a function ofa for N

5100, averaged over 500 training sets. TP has Gaussian we
g0(x)5g(x)5x. We use the samea priori distributions displayed
in Fig. 1: a50.12, solid line;a50.20, dashed line;a50.40, dotted
line; anda50.80, dash-dotted line.
6-4
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IV. GENERALIZATION ABILITY

The training energy measures the network’s performa
on a limited set of examples, whereas the ultimate goal i
find a network that performs well on all inputs, not just tho
in the training set. The performance of a given networkW
on the whole input space is measured by the generaliza
function. It is defined as the average error of the netw
over the whole input space, i.e.,

eg~W!5
1

2E dm~S!@g0~W0•S!2g~W•S!#2, ~21!

where dm(S) denotes a measure in the input space. If
inputs are distributed independently with zero mean va

and variance 1, thendm(S)5) i(2p)21e2Si
2/2dSi , and the

generalization error can be expressed by

eg~R!5
1

4pE dxdy

A12R2
expF2

x21y222xyR

2~12R2!
G @g0~x!

2g~y!#2, ~22!

where R5W0•W/(uW0uuWu). The behavior ofeg is com-
pletely determined by the parameterR. Let us consider here
the generalization error of a SP with the same transfer fu
tion as the TP. In the linear case, whereg0(x)5g(x)5x, the
generalization error is simply

eg512R. ~23!

The second transfer function to be considered is the c
g0(x)5g(x)5sinh(x)/Ae. In this case, the generalization e
ror is given by

eg~R!5sinh~1!2sinh~R!. ~24!

The powerful formalism of equilibrium statistical me
chanics may now be applied to calculate averages of Eq.~22!
with respect to the measureP(W). Such averages yield in
formation about the typical generalization performance o
network, governed byP(W). Thus the expected value of th
overlap of the SP with the TP is given byR
5W0•^W&/(uW0uu^W&u). For all cases studied here,^W&
5I ps(S

m)g21(z0
m), i.e., the mean overlap does not depend

the selecteda priori distribution and is given byR5a for
a<1. In Fig. 4, we display the generalization error of t
average perceptron, with the linear transfer function a
solid line and the transfer function sinh(x)/Ae as a dashed
line.

In the working hypothesis selection we apply the ma
mum likelihood criterion. In the case of a Gaussiana priori
distribution, the most probable configuration of weights
given by the mean value~10! and the generalization erro
curves coincide with those shown in Fig. 4. When both
and SP have Gaussian weights the Gibbs learning sch
gives perfect generalization ata51, equivalently to the ap-
proach presented here. But, when we use the doubled-pe
a priori distributions displayed in Fig. 1, we have a varie
of scenarios. For these cases, there is no analytical solu
04610
e
to

on
k

e
e

c-

se

a

n

a

-

me

ked

n,

so we examine the different situations using simulation.
all our simulations we usedN5100 and we averaged ove
500 training sets. Using the doubled-peakeda priori distri-
butions, we consider here two situations:~i! learning a rule
underlying the TP with binary weights and~ii ! learning a
rule underlying the TP with Gaussian weights. For the sa
of simplicity, linear transfer functions are used for the S
and TP in both situations.

In the first case we have a realizable rule for the SP@14#.
Figure 5 displays the generalization error for the samea
priori distributions displayed in Fig. 1:a50.12 as the solid
line, a50.20 dashed,a50.40 dotted, anda50.80 dash-
dotted. We found a finite value of the error generalization
a51 denoted byemin . The emin value depends on thea
priori distribution through the parametera as shown in Fig. 6
~solid line!. The emin vanishes for very small~binary SP!,
and very large~Gaussian SP! values of the parametera. This
result suggests that inappropriate selection of thea priori
distribution can lead to increasedemin with consequent poor
generalization performance. In this case, there is a los
information when we interpret the example of the training
Dp as constraints~5!. There is no loss of information whe
we choose thea priori distributionP0 appropriately. In order
to establish a comparison we briefly review some results
the Gibbs learning scheme atT50 for this case. For anya
.0, the training energy possesses only one global minim
R51. However, the training energy may still possess lowR
metastables states. For smalla, the energy landscape fa
away from the optimal overlapR51 is rough, implying slow
dynamic learning. Seunget al. @7# have shown by numerica
simulations that fora52.39 there are no local minima at al
and that fora.1 the system converges rapidly toR51 from
almost all initial conditions. In this case, establishing a co

FIG. 4. Typical generalization error for a perceptron with line
transfer function~solid line!, and for a perceptron with transfe
function sinh(x)/Ae ~dashed line!.
6-5



io
w

n

of

rule
TP

tion
que

-
in-
t in
c-
ssi-

-
r

b

g
ia

by a
e
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plete comparison is difficult due to the different scenar
presented by the two protocols, but we can say that, when
have the appropriateP0, the protocol based on informatio
theory and the Gibbs learning scheme atT50 have a similar
performance.

In the second case, the TP weightsW0 are normally dis-
tributed, so the rule is realizable only fora→`. Figure 7

FIG. 5. Generalization error as a function ofa for N5100,
averaged over 500 training sets. The examples were generated
TP with binary weights. We use the samea priori distributions
displayed in Fig. 1:a50.12, solid line;a50.20, dashed line;a
50.40, dotted line; anda50.80, dash-dotted line.

FIG. 6. emin versusa for N5100, averaged over 500 trainin
sets. TP with binary weights as solid line and TP with Gauss
weights as dashed line.emin in the limit a→0 is displayed as the
dotted line.
04610
s
eshowseg versusa for the samea priori distributions dis-
played in Fig. 1:a50.12 as a solid line,a50.20 dashed,a
50.40 dotted, anda50.80 dash-dotted. For these values
a, we have continuous learning with a finiteemin value at
a51. emin vanishes for higher values ofa as shown in Fig.
6 ~dashed line!, but, in contrast with the earlier example,emin
does not diminish for smaller values ofa. In the limit a
→0 the SP weights are restricted to binary values, so the
is unrealizable due to a mismatch of weights between the
and SP. In this caseemin in the thermodynamic limit is 0.202
~dotted line in Fig. 6!, the symmetric replica approach@7#
yields an asymptotic learningeg→emin whena→`. These
results suggest, at least in this instance, that the informa
theoretical approach is a more effective learning techni
than the classical Gibbs learning scheme.

Selection of examples

The expressions~12! and ~17! establish the information
gain I g from the examples used in the training procedure.I g
depends also on the transfer functiong used by the SP, and
on thea priori distribution. Thus,I g can capture some fea
tures associated with the training set. We think that the
formation gain could be used to evaluate the example se
different situations, and the suitability of the transfer fun
tion used by the SP. Below, we explore some of these po
bilities.

We evaluatedI g for different example sets using a two
peakeda priori distribution witha50.05 and linear transfe
function for the SP and TP. In Table I, we show theI g values
obtained from three different example sets:~i! from 50 linear

y a

n

FIG. 7. Generalization error as a function ofa for N5100,
averaged over 500 training sets. The examples were generated
TP whose weights are normally distributed. We use the sama
priori distributions displayed in Fig. 1:a50.12, solid line; a
50.20, dashed line;a50.40 dotted line; anda50.80, dash-dotted
line.
6-6
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independent~LI ! examples,~ii ! from a set with 25 LI ex-
amples plus 25 examples that are linear combinations of
first 25, and~iii ! from 50 LI examples to which we adde
three different levels of Gaussian noise. Again we usedN
5100 and we averaged over 500 training sets. As one
pects, the information gained using non-LI examples is l
than when use LI examples. In the case of noisy exam
the information gain is greater than for clean examples,
cause the information needed to describe this set is gre
These simple examples show thatI g works well to evaluate
the information contained in the example set before train
the SP. This kind of study could be relevant when we nee
select the examples, and has the advantage of avoiding t
ing procedures with the consecutive comparison of the p
formance of two perceptrons trained with different exam
sets.

The problem of learning from examples reduces to de
mining adequate weights, given a transfer function formg
which we choose in one way or another. As discussed
Rissanen@15#, there is no algorithmic way to determine th
transfer function. However, the information gainI g depends
both upon the specific choice of the training set, and~in an
indirect way! on the transfer function used by the SP. O
may ask the following question: Is it possible that the info
mation gain determines the suitability of a given trans
function of the SP, in order to reproduce the TP?

We can try to answer the above question by testing
hypothesis in the following manner. Consider a binary
with transfer functiong0(x)5tanh(x) and N5100, which
generates 75 independent examples. We compute, usi
sharp two-peakeda priori distribution (a50.05), the infor-
mation gained from these examples by two SP’s, one w
g(x)5tanh(x) and the other with a linear transfer functio
g(x)5x. In the case of a SP with the same transfer funct
as the TP, we haveI g50.669 with a standard deviation o
0.061. In the case of a SP withg(x)5x, the information
gained isI g50.229 with a standard deviation of 0.050. W

TABLE I. I g values obtained from 50 linear independent~LI !
examples, and from 50 non-LI examples at the top.I g values ob-
tained from 50 LI examples to which we add Gaussian noise w
three different standard deviations~SD! at the bottom.

Clean data I g s

LI 0.410 0.089
Non-LI 0.147 0.051
Noisy data~SD! I g s

0.10 0.426 0.090
0.05 0.426 0.090
0.01 0.426 0.090
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can see that the information gained in this particular cas
significantly greater when we choose the right transfer fu
tion for the SP.

V. DISCUSSION AND CONCLUSIONS

We have illustrated the IT approach to learning a ru
from examples by perceptrons. We have regarded differea
priori distributions in two scenarios: a TP with binar
weights and a TP with Gaussian weights. We conclude
the network’s performance is very sensitive to the choice
our a priori distribution. Our approach takes advantage
this fact in the sense of allowing the introduction of o
previous knowledge concerning the nature of the TP weig
In particular, one can evaluate the probabilities associa
with each weight in terms of the available examples.
should be pointed out that, in the limita→0, our approach
does not exhibit the phase transition from poor general
tion to perfect generalization characteristic of the symme
replica solution for the binary perceptron@7#. In addition, at
least in the perceptron case investigated here, frustration
pears to be the result of poor ‘‘administrative manageme
of the available examples. Our IT approach enables us
effectively employ all the available information, so that ea
example is used as a constraint. Thus, the ensuing obse
tion level becomes much richer than the standard one. E
cient management leads to better results in neural proce
as in the real world.

The IT approach also seems to offer promising persp
tive as a learning protocol@16,17#; the methodology pre-
sented here introduces an information measure as a bo
We used some examples to show that this quantity can
useful tool to explore both the example set to be used in
learning procedure, and the transfer function form used
the SP. We wish to remark that theI g is easy and not expen
sive to compute. It is expressed only in terms of the train
set, while measures like the mean square error are comp
over many of test examples. This is certainly a notable fa
of our approach that greatly helps in studying the learn
process in a variety of situations, without paying an exc
sive computational cost.

The learning protocol presented here constitutes an e
learning technique for perceptrons, which should be of int
est not only for basic research but also for applications
many interesting real world problems.
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